
4

ICL - The Image Composition Language 4 3 7d7
777

James D. Foley
Won Chul Kim

Institute for Information Science and Technolo y
Department of Electrical Engineering and Computer 8cience

School of Engineering and Applied Science
The Geor e Washington University

Was 1 ington, D.C. 20052

September 1986

Report GWU-llST-86-26

(BASA-CB-180313) ICL: TflE IBAaEE COHPOSITION 187-27413
LANCUA6E (George Hasbiagtco Cniv.) 37 p
&wail: BTXS BC AC3/I¶F A01 CSCL 09B

Unclas
G3/6 1 0063769

This work was supported by the Applied Mathematical Sciences Program, Office of Basic
Energy Sciences, DOE, grant DE-AS05-83ER13122, and NASA-Langley Research Center,
grant ‘NAG-1-538 632200.

Abstract

The Image Composition Language provides a convenient way for programmers of
interactive graphics application programs to define how the video look-up table
of a raster display system is to be loaded. ICL allows one or several images
stored in the frame buffer to be combined in a variety of ways. ICL treats these
images as variables, and provides arithemtic, relational, and conditional
operators to combine the images, scalar variables, and constants in image
composition expressions such as

old-image f + n8W-imag8 (1.0 - f), and
if imag8.r > 0.5 then image - (0.5, 0, 0) else image endif.

The objective of ICL is to provide programmers with a simple way to compose
images, to relieve the tedium usually associated with loading the video look-up
table to obtain desired results.

1

ICL - The Image Composition Language

1. Introduction

Programming of interactive graphics applications is a tedious and expensive process.
Many details of interaction techniques, information presentation, display organization,
etc. must be considered. Long sequences of subroutine calls to graphics subroutine
packages are often needed to carry out relatively simple operations. As the cost of
computer graphics equipment continues to drop, the cost of programming becomes more
and more of a barrier to development of applications.

Why is graphics programming expensive? There are several reasons. First, the level
of individual semantic units found in typical graphics subroutine packages such as the
Core [GSPC79] and GKS [GKS84] are quite low, requiring multiple subroutine calls to
carry out relatively simple operations. This is why higher-level implementation tools,
such as User Interface Management Systems [OLSE84], dynamic hierarchical graphics
packages [SHUE86], and graphics packages integrated with data base management
systems [GARR82] are attractive. In some sense, working with traditional graphics
package tools is akin to programming with rudimentary procedural languages, while
working with higher-level tools is analogous to the so-called fourth-generation tools of
program generators, query languages, etc.

The second problem is that calls to a subroutine package are often not the most useful
way to express semantics, as illustrated by the two following ways to express arithmetic
operations:

Add (a, b, c) { a + b - > c 1
Add (e, f, g 1 { e + f - > g 1
Mu1 (c, g, result)

result := (a + 6) (8 + f)
{ c ' g -> result }

Clearly the programming language is preferable. in that the reader can much more
quickly grasp the meaning of the assignment statement.

We believe that providing programming language tools for graphics application
programmers can enhance their productivity. We have developed a language to facilitate
one aspect of the work faced by application programmers - loading the video look-up
table (LUT) of a raster display system in order to modify and/or combine multiple
images stored in sets of planes in the display's frame buffer. With the Image
Composition Language (ICL), the programmer writes composition expressions made up
of arithmetic, relational, and logical operators which combine images, scalars, and
literals. Each composition expression is associated with an image frame, to indicate a
display region in which the expression is to be applied and hence in which the viewer
will see the image created by the composition expression. Each image has its own logical
look-up table, entries of which have either a color or a special value, transparent, to
signify that pixels with the corresponding pixel value are to be treated as transparent
when combined with pixels from other images.

2

The compiler for ICL, called the Look-Up Table Compiler (LUTC), automatically
computes the appropriate look-up table contents needed to achieve the effect specified in
the composition expression. The LUTC is implemented as a run-time subroutine
library, and is written in Modula-2. Composition expressions are passed to the LUTC as
character strings, after which they are compiled into look-up table contents.

ICL can be used to implement some common image processing, movie-making, and
window manager operations. Examples from some of these are used throughout the paper
to explain ICL concepts. ICL assumes that the refresh buffer planes have already been
loaded with the images which are to be operated upon. The application program would
normally do this using a graphics package such as Core or GKS, or a hidden surface
removal and rendering package.

The ICL concept was first developed as part of a conceptual model for raster system
architectures [ACQU82] which integrated a number of traditional graphics concepts with
the newer set of raster concepts. A language for operating on images was developed as
part of that work [ACQU84]. A refinement of that language is reported on in this paper.

The concepts of the ICL and LUTC can be extended to raster display architectures which
provide a multi-bit RasterOp instruction cabable of performing arithmetic and boolean
operations [PRES86].

2. Previous work

Two other related works are reported in the literature. The first is Guibas and Stolfi's
elegant "Bitmap Calculus" and corresponding language MUMBLE [GUIB82] for
manipulating bitmaps. The language provides boolean, relational, bitstring, conditional,
assignment, and transformation operators on bitmaps and scalars. Also described are a
compiler for processing the language, and a number of interesting and useful bitmap
algorithms. The compiler generates sequences of raster-op and other related operations
for execution in a single-address space raster display architecture.

Because the target machines and underlying objectives for the MUMBLE and ICL
languages differ, the languages themselves differ in scope. MUMBLE provides
expressions and flow of control; ICL does not. MUMBLE permits arbitrary-size bitmaps;
iCi does not. The output of ICL is the (typically 1024) look-up table entries to evaluate
an expression; MUMBLE output is a sequence of RasterOp and conventional instructions.
With ICL, the precision of arithmetic results is limited only by the width of the LUT,
while with MUMBLE, the precision is limited by the number of bits per pixel. With
MUMBLE, the bit map variable to which an expression is assigned can be further
manipulated, while the results of ICL expresions are only available visually on the view
surface. In MUMBLE there is no explicit notion that a bit map may have one or more
pixel values which mean "transparent". Of course, appropriate logical operations
between bit maps can achieve the same effect [SALE86], but the programmer must
consciously translate his or her objective of "transparent" into the appropriate boolean
operation.

The other related work is that of Zachrisen [ZACH84], who describes a system for
subdividing a frame buffer into multiple logically distinct images (called lavers in the
paper). The images are views superimposed one upon the other. Each image has a priority,
with the front-most image having the highest priority; the rear-most, the lowest. Each
image has its own logical look-up table, along with a single pixel value which represents
transparent. No operators between images are provided, nor is the concept of an image

3

frame provided. A recursive procedure for loading the physical
algorithm begins with the highest-priority image, and recurs
image.

lookup table is given. The
for each lower-priority

3. ICL Concepts

Central to ICL are images, which are the size of the frame buffer in height and width.
Each image has a rogrammer-specified number of bits per pixel (k), and a logical

logical look-up table associated with each image can be set to either a color or to a
special value of transparent. Pixels with this value are not displayed, and are treated
in a special way discussed below. Colors are specified as {red, green, blue} triplets
whose individual values are in the range of [O.O, 1.01. Images have character-string
names.

look-up table with 2 R entries. Images can be created and deleted, and entries in the

Composition expressions operate on one or more images, literals, and scalar program
variables. Unlike RasterOp, which operates on pixel values, composition expressions
operate on the color values of the pixels. There are two types of composition
expressions: Simple, and If. Simple composition expressions are formed with the
operators +, -, /, *, min, and max.

The composition expression

is a red, green, blue color triplet literal which evaluates to create a field of white.
{l.O, 1.0, 1.0)

Similarly,

evaluates to black, while

evaluates to red, etc. Black can be expressed more tersely as the scalar literal 0.0,
white as 1.0, and grays as intermediate values.

(0.0, 0.0, 0.0)

{l .O, 0.0, 0.0)

Further examples of composition expressions are based on the simple test images a and
b, shown in Figures 1 and 2. The result of the expression

is shown in Figure 3. The + operator is performed component by component on a and b,
with the component sum defined to be either the actual sum or 1.0, whichever is less.

a + b

The difference of a and b is shown in Figure 4. The individual components of an ICL
expression, once evaluated, are clamped from above at 1.0 and from below at 0.0. This
is of course done because the RGB color space is defined with each component in the [O.O,
1 .O] interval. Similar clamping would be needed with other color spaces. The clamping
is not done after each operator is applied, but only after an entire expression is
evaluated.

Figure 5 illustrates the max operator via the expression

a maxb

ORIGINAL PAGE Es
OF POOR QUALITY,

Figure 1. ImageA, used to illustrate composition expressions. The vertical stripes have
intensities of 1.0, .75, S O , .25,, and 0.0.

Figure 2. Imagef3, used to illustrate composition expressions. The intensities are the
same as in Figure 1.

Figure 3. The sum of the two images, ImageA+ ImageB.

Figure 4. The difference of the two images, ImageA- ImageB.

RRI’GINAI; PAGE IS
OF POOR (?IJAIJTY

Figure 5. Images a and b combined with the max operator, ImageA max ImageB.

Figure 6. Images a and b combined with the min operator, ImageA min ImageB.

4

Figure 6 illustrates the min operator via the expression

If t is a scalar variable, then the expression

multiples the color of each pixel in a times t. Using the same convention for shortening
literals which have equal components, this can also be written as:

Given the image of Mona -Lisa shown' in Figure 7, the expression:

expands the range of each color component's values from .5 to 1 .O into 0.0 to 1 .O, and
maps all the values from 0.0 to 0.5 into the value 0.0, as shown in Figure 8. This type
of color range expansion is common in image processing work.

t

a min b

a (ts ts 2)

a ' t

(Mona-Lisa - 0.5) 2

Thus far we have discussed only simple composition expressions. The other type of
composition expression is the conditional composition expression, which is of the form:

if Conditional-Expression

endif

then Then-Composition-Expression
else Else-Composition-Expression

where the indentation is used solely for clarity of presentation. The Then and Else
composition expressions can either be simple composition expressions or further
conditional composition expressions. The Conditional-Expression is formed with
relational operators (=, <>, <, e=, >, =>), and the results of the relational operators can
be combined with the and, or, and not operators. The conditional composition
expression takes on the value of either the Then-Composition-Expression or the
Else-Composition-Expression, depending on whether the Conditional-Expression is
true or false. If the Conditional-Expression evaluates to false and the optional else
clause is missing, then the value is transparent. The effect of this value is explained
below.

A simple conditional composition expression is:

if Mona-Lisa > 0.6 then 1.0 else 0.0 endif

which contours the gray level image Mona Lisa at the gray value of 0.6 as shown in
Figure 9.

Another example, showing the nesting of the if statement, is:

i f Mona-Lisa ~ 0 . 9 then (0.8, 0.8, 1.0)
else if Mona-Lisa ~ 0 . 7 then (0.6, 0.6, 0.8)
else if Mona-Lisa ~ 0 . 5 then (0.4, 0.4, 0.6)
else if Mona-Lisa ~ 0 . 3 then (0.2, 0.2, 0.4)
else (0.1, 0.1, 0.2)

endif endif endif endif

The result of applying this exxpression to the Mona-Lisa image is shown in Figure 10.

Further examples of ICL expression are based on the graytone image cof Figure 11.
Figure 12 shows the use of a more complex condtional expression with nested if-then-
else statements to replace specific gray values with colored lines. The expression is:

c

ORIGINAL PAGE I$
OE POOR Q U W

Figure 7. The image Mona-Lisa, a digitized black and white halftone photo.

Figure 8. Expansion of the range [OS, 1.01 into the range [O.O, 1 ,O], using the
compostion expression (Mona-Lisa - 0.5) 2.

Figure 9. The half-tone image Mona-Lisa contoured at an intensity level of .6, so that
all values greater than .6 are white, and the rest are black. The composition expression
is: if Mona-Llsa > 0.6 then 1.0 else 0.0 endif.

Figure 10. The Mona Lisa image modified using a nested if ... then ... else statement.

0RIGINA.G PAGE IS
OF POOR QUALITY Figure 11. A graytone image c .

Figure 12. The result of applying a nested if ... then ... else statement with or used
in the conditional expression.

5

i f (c-0.1) o r (c=0.7) then {l,l,O}
else i f (c=0.2) or (c=0.8) then {0,1,0}
else i f (c=0.3) or (~ ~ 0 . 9) then {l,O,O}
else c

endif endif endif

In Figure 13 we see the results of a similar expression, but with ranges of intensities
being modified instead of specifc values:

i f (ccO.8) and (00.6) then c+{l,O,O}
else if (~ ~ 0 . 5) and (00.3) then c+(O,l,O}
else c

endif endif
Figure 14 shows text with filled interiors, and Figure 15 shows the same text with
empty interior. This effect is obtained by subtracting the interior color using the
following expression:

text - (1 ,O,O}

Selectors can be used to designate the red, green, or blue component of an image used in a
Conditional-Expression :

i f a.r > 0.5 then a - (0.5, 0, 0) else a endif
This expression removes some red from all those pixels in a which have more than 0.5
red, and leaves the other pixels unchanged.

The diagrams in Appendix A give precise definitions for the syntax of compositon
expressions.

The LUTC is implemented as a subroutine package: ICL expressions are passed as
character strings at run time, then parsed and evaluated. Because ICL is currently
implemented as a subroutine package rather than as a language extension, image and
scalar variables are declared by procedure calls.

In the following paragraphs, we discuss some of the subroutine calls which make up ICL.
A complete list of the calls is in Appendix 6. Type definitions assumed by the subroutine
calls are as follows:

tY Pe
PixelRange = 1..9;
IndexRange = 0..511;
ColorRange = real;
Rectangle = record

end;
xmin, xmax, ymin, ymax : cardinal;

Images are defined with the call:

Definelrnage (ImageName :array of char ;
Bits Per Pixel : PixelRange 1 1

which allocates the requisite number of planes in the refresh buffer to the image.

Scalar variables used in ICL expressions are actual Modula-2 program variables. They
are declared to LUTC by:

DeclareVar (VariableName :array of char ;

ORIGINAL' PAGE IS
OF POOR QUALITY

Figure 13. The result of applying a nested if ... then ... else statement with and used
in the conditional expression to specify ranges of values.

0 I t K Z . N ~ PA- IS
Figure 14. Text strings with filled interior. OF POOR QUALITY

Figure 15. Text strings with empty interior, created by subtracting the interior color
from the original image.

6

VariableAddress : address 1,
where VariableAddress, as the name implies, is the address of the variable. This is used
at run time to obtain the value of variables used in composition expressions. Scalar
variables must be of type real.
The color associated with the pixel value of a particular image is set with the procedure:

SetlmagelndexColor (ImageNme :array of char , ;
Index : IndexRange ,
red,green, blue : ColorRange 1;

The procedure call:

De f i n eC o m pos i t ion F ra me (FrameName :array of char ;
Bounds : Rectangle ,
CompositionExpression : array of char),

defines to the LUTC both a rectangular cornposition frame and an associated composition
expression. The expression is to be applied within the composition frame. Multiple
composition frames and their accompanying composition expressions can be defined by
successive calls to DefineCompositionFrame. The entire set of defined frames are
displayed via a call to the procedure DisplayCompositionlmage. If several frames
overlap, then temporal priority rules: the most recently defined frame has the highest
priority.

Composition frames are not restricteu to be a rectangle. They can be modified by the
procedure calls:

Extend Co m pos i t i o n F ra me (FrameName :array of char ;

ReduceCompositionFrame (FrameName :array of char :
Boll& : Rectangle 1:

Boll& : Rectangle);

A complete list of LUTC procedure calls is given in Appendix B.

4. Transparent Pixels

One concept in ICL is worthy of separate discussion - transparent pixels. Any number of
pixel values associated with an image can be declared to be transparent by calling the
procedure:

SetlmagelndexTransparency (Image Name : array of char ;
Index : IndexRange ,
Transparency : boolean 1;

The underlying motivation for transparent pixels is that images being composed together
are often cropped along irregular paths, such as a picture of a ship being cropped along
the silhouette edge of the ship. Because the picture must be stored in an image, which is
a rectangular array of pixel values, some way is needed to indicate which portions of the
image are to enter into composition expression calculations, and which are to be ignored.
For example, consider the array of pixel values shown in Figure 16. Pixel value 0 is
used to designate those portions of the image which are not of interest, while values 1, 2,
and 3 are actual values. To compose this image, which is called picture, with another
image, called background, the following cornposition expression would be used:

if picture <> transparent then picture else background endif

Figure 16. A two-bit per pixel image, with the pixel value of 0
corresponding to the background value, which is treated as
Transparent. Pixel values 1, 2, and 3 are part of the actual image.

7

ICL might have been designed differently, such that this effect would be achieved in some
other way. First, a mask, consisting of a one-bit per pixel image, might be used to
define which part of PlCT is to be used in the composition, as in the recent "Two-Bit
Graphics" algebra for manipulating one-bit images accompanied by a one-bit
transparency mask [SALE86], or as in [WARN82]. This was rejected because bit planes
are scarce in a refresh buffer.

Alternatively, transparent pixels might have been rejected in favor of allowing pixel
index values (rather than colors) to be used in the conditional, for instance:

if picturehdex <> 0 then picture else background endif
While viable, this was rejected because we wanted to limit ICL statements to image
colors.

Another alternative would be for the programmer to assign some color, say i.7, .7, .7),
to pixel index 0 (any other color would be equally suitable). Then the IF statement
would be:

if picture e {.7, .7, .7) then picture else background endif

This was rejected for two reasons. First, the use of a value from a range of values to
designate something different than the other values is poor software engineering practice
(akin to a function returning a zero if the function could not be evaluated for the given
argument, otherwise returning the correct value. Second, what if {.7, .7, .7} also just
happens to be the actual color of some pixel value in the image? There is no way to
determine if a particular pixel with this value is to be treated as transparent, or as a
pixel to be displayed.

Yet another possibility is to define geometric outlines, or "key holes", through which an
image could be viewed, such as the shape stencils of [WARN82], the mask regions of
Quickdraw [APPL85], or the clipping paths of PostScript [ADOBSS]. We rejected this
for the sake of simplicity.

Arithmetic operations between transparent pixels return transparent as a value. For
operations between one transparent and one regular pixel value, transparent is
defined as the identity element for the operation in question: as 0 for +, -, and max; as
1 for *, and min. This means that transparent pixels essentially do no! enter into
compositions. For relational operators, a comparison between two transparent pixels is
true for =, e=, and >-, and false for the other comparisons. Comparisons between one
transparent pixel and one non-transparent pixel return false except for <>, which is
true. The false results are because there is no ordering between the value
transparent and the color triplets.

6. Further Examples

In this section we further illustrate ICL concepts. To add together three images stored in
the refresh buffer, the expression:

or the expression:

a13 + b/3 + el3

(a + b + c) /3

8

can be used: the expressions are equivalent, because the range of intermediate results is
not limited to the [O.O, 1.01 interval (as discussed in Section 3).

Imagine three monochrome images called triangle, rectangle, and circle with pixel value
0 (the background value) having been declared to have value transparent. To display
the images such that triangle is displayed on top of rectangle which is in turn displayed
on top of circle, we use the expression:

i f triangle <> transparent then {0,0,1}
else i f rectangle <> transparent then {0,1,0}
else i f circle <> transparent then {1,0,0}
else 0.0

endif endif endif
Figure 17 illustrates this prioritization effect, which is further discussed in [FOLE82,
page 4911.

Many operations required by window managers can be implemented in ICL. If the images
for the two windows are win7 and win2, then the sequence of calls:

De f i n eC o m po si t i o n F r a me ("one", window 7-boundary, "win 7
De f i n eC o m posi t i on F ra me ("two ", windo ~Z'boundary, "win2 ")
DisplayComposedlmage

will display win2 on top of win7, because the temporal priority of composition frame
definition determines how to resolve !he visibility conflict when composition frames
overlap. The variables window7-bocmdary and windowZ-bOundary are assumed to be of
type rectangle, as previously defined. Resiring window 1, while maintaining its
visibility with respect to window 2, would simply involve using the calls:

Red u ceC om p os i t i o n F ra me ("one", window l-boundary)
{Assign new boundary values to the record windowl-boundary}
ExtendCompositionFrame ("one", windowl-boundary)

Reversing the visibility order of then two windows so that win7 is on top involves just:

De f i n eC o m p os i t i o n F ra me ("two ", windo wZ-boundary, "win2")
De f i n eC om p os i t i o nF r a me ("one ", window l-boundary, "win 7 ")
DisplayComposedlmage

In this example, the composition expressions associated with composition frames one and
two are the single images win7 and win2.
More complicated images can be created, as in Figure 18 which shows the results of
applying composition expressions to the image of Mona-Lisa. Frame one is defined as
whole-area (0,1023,0,1023), reduced by the small upper-right -area
(520,820,500,800) and verticaLstrip (500,510,0,1023) using
ReduceCompositionFrame. The frame on top named two is defined after frame one,
and consists of two disjoint areas, right_half (51 0,1023,0,1023) and lower-left-area
(1 80,480,200,500), created with ExtendCompositionFrame:

Defi necomposit ionFrame ("one", whole-area, "Mona-Lisa+{O, 0,0.3} ")
ReduceCompositionFrame ("one",upper_right-area)
Reduce C om p os i t i o n F ra me ("on e ", vertical- s t rip)
DefineCompositionFrame ("two",right-half, "Mona-Lisa+{l ,0,0}")
Extend Co m p o s i t i o n F ra me ("two ", lower- le f t' area)
Display Composedlmage

Figure 17. The effect of prioritizing three monochrome (one-bit) images on top of one
another with a nested if ... then ... else statement.

Figure 18. Two overlapping frames with different composition expressions. The frames
were created with the extend and reduce procedures.

9

Another application of ICL is to produce 'lap dissolve' images, in which one image slowly
fades out and is replaced by another image. The basic idea is that a composition
expression:

is continually applied as the parameter value t varies from 0 to 1. This example shows
the advantage of including scalar variables in composition expressions: changing the
effect of the expression simply involves changing the value of the variable@) used in the
expression, and reevaluating. The code to produce such an effect is simply:

imageA'(1 - 1) + t'image0

DeclareVar ("t",ADR(t)); {tell LUTC about t 1
Deflnelmage ("imageA", 5);
Definelmage ("imageB", 5);
DefineCompositionFrame

for i : = 0 to n do
t := FLOAT(i)IFLOAT(n);
DisplayComposedlmage;
{might want to introduce 'a time delay here}

{an image with 5 bitdpixel }
{an image with 5 bitdpixel }

1
("LapDissolve", boundary, "imageA'(1 - t) + imageS't ");

{n is number of steps

end ;

Several steps in the lap-dissolve sequence, with values of t = 0.0, 0.2, 0.4, 0.6, 0.8,
and 1.0, are shown in Figures 19.1 -19.6.

A very easy way to allow a user to control the red/green/blue color balance and overall
brightness of an image is with the expression:

The scalar variables red, green, blue, and brightness would all be set with slider dials
or some similar dynamic interaction technique.

(image '{red, 0, 0) + image *{O, green, 0) + image ' (0, 0, blue}) ' brightness.

In summary, ICL can be used in a variety of ways to combine multiple images stored in
the refresh buffer.

6. Implementation

The LUTC has been implemented on a VAX 11/780, under VMS, using a 10-plane
RAMTEK 9400. The LUTC is a run-time subroutine package. The implementation
language is MODULA-2. The main reason for the choice of this language is its ability to
pass the addresses of variables declared in the program, in order to build our variable
table. PASCAL allows only dynamic creation of pointers. MODULA-2 does not impose
this restriction; the addresses of declared variables within the program may be
obtained, using the low-level system facilities. With this capability, composition
expressions can include numeric variables. Other reasons for the choice of MODULA-2
as the implementation language include its modularity, separate compilation capability,
and high-level data structure facility.

There are two main modules: the first builds a symbol table, based on image and
variable declarations, and the other creates composition frames and evaluates
composition expressions. These and other modules are shown in Figure 20.

DmmAL PACE
OF 'OnK? q J A I , I T y

Figure 19.1. A lap-dissolve sequence, showing the effects of the parameter ta t 0.0.

Figure 19.2. A lap-dissolve sequence, showing the effects of the parameter tat 0.2.

ORIGINAG PAGE IS
OF POOR QUALITY

Figure 19.3. A lap-dissolve sequence, showing the effects of the parameter ta t 0.4.

Figure 19.4. A lap-dissolve sequence, showing the effects of the parameter tat 0.6.

ORIGINAL' PAGE
POOR QUALI?'y:

Figure 19.5. A lap-dissolve sequence, showing the effects of the parameter ta t 0.8.

Figure 19.6. A lap-dissolve sequence, showing the effects of the parameter t at 1 .O.

Ap p I ica t i o n
Program

Lookup
Table

Compiler

I
I I + t

Frame Symbol
Table Table

I

Parser

A I
Evaluator I I I I

I

Display System I

Figure 20. An overview of the LUTC and how it is integrated with the
application program and display system. The application program calls
to the graphics subroutine package cause images to be created in selected
planes of the bit map. The LUTC loads the lookup table to control the
appearance of the images.

10

The symbol table records the image name, bits per pixel, logical look up table and
contents thereof (including tranparency of any pixel values), and a mask indicating
which planes have been allocated to the image.

A composition frame record in then frame table contains its name and a mask indicating
which plane has been allocated to the frame. This ma,& is used in evaluating a
composition expression, to see if a particular look-up table value might be affected by
the composition expression associated with the frame. The plane allocated to the
composition frame contains the boundary of the frame as a one-bit mask. When a
composition frame is defined, the plane is initialized to 0, and the frame rectangle is
scan-converted into the plane as 1's. If the frame is extended, the new rectangle is added
to the plane as 1's. If the frame is reduced, the reduction rectangle is scan converted
into the frame as 0's.

When a composition expression is passed to the LUTC, it is parsed into a sequence of
symbols and lexical tokens which are recognized by the composition language. Errors
are also detected and flagged so that the expression is not used if CornposeExpression
is called. The composition expression is tokenized because the expression will be
repeatedly evaluated to actually bad the look-up table, so it needs to be expressed in a
readily accessable form rather than as a character string. The parser converts the infix
expressions into postfix form and stores it in the composition frame record.

The parser handles use of parenthesis, nesting of if-then-else-endif statements, and
precedence rules for the expression operators. The descending order is:

(' 9 4
(+ t -)
(rnin, rnax)
(>, >=, <, <=, =, <>)
(no t 1
(and, or)

The evaluator actually evaluates the tokenized postfix expressions and loads the look-up
table. The evaluation uses a partial result stack. Each token is examined. If it is an
operand, then the value is fetched and pushed onto the partial result stack. The value is
not the pixel value of the image in question, but the value referenced by the pixel value
in the logical lookup table. If it is an operator, then its operands are popped from the
stack, the operator is applied, and the resuit is pushed back on the stack.

The evaluator does this for each lookup table entry, because the values for each image
are different for each entry. As the evaluator cycles through each lookup table entry, it:

1. Finds the highest priority composition frame that affects this lookup table
index. Recall that priority for overlapping cornposition frames is temporal.
2. Evaluates the highest priority composition expression for this index,

clamping results to [O.O, 1.01.
3. Loads the lookup table with the value of the evaluated cornposition expression.

The time required to load the lookup table depends on the complexity of the expressions.
For instance, parsing a simple binary expression (i.e. operand operator operand) takes
less than .01 second of VAX 11/780 .time, while creating the 1024-entry lookup table
takes about one-half a second, or 500 p e c per entry. A three-deep i f ... i f ... if ...
structure (i.e. i f operand rel-op operand then result else if operand rel-op operand
then result else if operand rel-op operand then result else result endif endif

1 1

endif) parses in .12 seconds, and requires two seconds for table generation. No
attempt has yet been made to speed up these times.

7. Summary and Directions for Future Work

We have found the Image Composition Language and its associated LUTC to be a useful tool
for increasing programmer productivity. A number of enhancements would make ICL be
even more useful. Integrating composition expressions with the base language, MODULA,
via a preprocessor would make programs more readable than at present. Implementing
Deletelmage would provide more flexibility. Also useful would be language constructs
for distinguishing between a pixel value and the lookup table value referenced by that
pixel. This would allow classical raster operations to be made available through ICL.

Our colleague L. Henry has partially developed an alternative algorithmic approach to
computing the look-up table values, which we would like to further explore. It involves
computing an intermediate lookup table for each operator, and then using the
intermediate lookup table to compute the next lookup table. For instance, in the
composition expression a + brc, the Hc expression would be evaluated to produce a
lookup table, which we will call temp. Then the expression a + temp would be evaluated,
producing the final lookup table. This could be more efficient than the present
algorithm.

ICL can also be implemented with images of different sites, with the results of the
expression creating another image rather than just a view of the display. That is, ICL
could be the basis for a fuller language for manipulating arbitrary bit map images. Such
an implementation would want to take advantage of raster operation hardware found on
many graphics-oriented workstations

Acknowledgements: We are pleased to acknowledge James Acquah for some of the ideas
found in ICL and Chuck McMath for implementing an earlier version of ICL. The
Graphics and User Interface Research Group at George Washington University provided
an intellectual environment supporting this work, while financial support was provided
by the Applied Mathematical Sciences Program, Office of Basic Energy Sciences of DOE,
grant DE-AS05-83ER13122, and NASA-Langley Research Center, grant NAG-1 -538-
632200.

8. References

ACQU82

ACQU84

ADOB85

APPL85

Acquah, J., J. Foley, J. Sibert, and P. Wenner, "A Conceptual Model of Raster
Graphics Systems," SIGGRAPH '82 Proceedings, published as Computer
Graphics, 16(3), August 1982.

Acquah, J., J. Foley, and C. McMath, Graphics Programmings Language
Research Status Report, Report GWU-IIST-84-49, Dept. of EE&CS, George
Washington University, Washington, D.C. 1984.

Adobe Systems, PostScript Language Tutorial and Cookbook, Addison-Wesley,
Reading MA, 1985.

Apple Computer, Inc., Inside Macintosh, Cupertino, CA, 1985.

12

GARR82 Garrett, M. and J. Foley, “Graphics Programming Using a Database System with
Dependency Declarations”, Transaction on Graphics, 1 (2), April 1982, pp.
109-1 28.

GKS84 “Graphical Kernel System,” published as a special issue of Computer Graphics,
February 1984.

GSPC79 “Status Report of the Graphics Standards Committee,” Computer Graphics
13(3), August 1979.

GUIB82 Guibas, L., and J. Stolfi, “A Language for Bitmap Manipulation,” Transactions
on Graphics, 1(3), July 1982, pp. 191 - 214 .

PRES86 Preston, Asal, Koshell, and Guttag, The Texas Instruments 3401 0 Graphics
System Processor, 6(10).

SALE86

SHUE86

Salesin, D. and R. Barzel, “Two-Bit Graphics”, E€€ Computer Graphics and
Applications, 6(6), June 1986, pp. 36-42.

Shuey, D., D. Bailey, and T. Morrissey, “PHIGS: A Standard, Dynamic,
Interaction Graphics Interface,” I€€€ Commputer Graphics and Applications,
6(8), August 1986, pp. 50 - 57.

ZACH84 Zachrisen, Morten, “Adding Structure to Bit-Map Displays,” /E€€ Computer
Graphics and Applications, 4(7), July 1984, pp. 47-51.

13

b ELSE d Composition-Statement

Appendix A - Composition Expression Syntax

Number-Variable b
Number-Literal &
{ <red>, <green>, <blue> } b
(Composition-Statement) _I,

COMPOSITION STATEMENT

TERM

A b c + - t’ Factor 4 Factor

FACTOR

PRIMARY

CONDITIONAL EXPRESSION
14

Condition

&:rTb
CONDITION

Cornp-Statement + -1-w + Comp-Statement
Selector - -1-w + Selector
(Conditional-Expression)

RELATIONAL OPERATOR

IMAGE NAME , NUMBER VARIABLE

<Identifier>

NUMBER LITERAL, <red>, <green>, -he>

<Positive R e a l >

SELECTOR

- E x Image-Name _I) .

15

Appendix B - LUTC subroutine calls.

Type definitions used in these subroutine calls are as follows:

t Y Pe.
PixelRange = 1 . 3 ;
IndexRange = 0..511:
ColorRange = real;
Rectangle = record

end;
xmin,xmax,ymin,ymax : cardinal;

Definelmage (lmageName : array of char ;
Bits Per Pixel : PixelRange 1:

An image with the given lmageName is allocated in the refresh buffer with BitsPerPixel
planes. lmageNarne may be used in composition expressions. The height and width of the
image cover the entire refresh buffer. Error if lmageName is already in use of if
insufficient planes are free to satisfy the request.

Deletelmage (ImageName : array of char);

The named image is deleted, making its refresh buffer planes available. Error if named
image does not exist. (This procedure is unimplemented, so that currently, images are
statically allocated.)

Clearlmage (lmageName : array of char);

The image is cleared: all pixels are set to zero. Error in the image does not exist.

Selectlmage (lmageName : array of char);

The named image is established as the current image to receive output from the graphics
subroutine package which sits "on top of" ICL.

Set I mag el ndexCo I or (ImageName :array of char :
Index : IndexRange I

red,green, blue : ColorRange 1 ;
Entry index in the look up table associated with image lmageName is set to the given
color triplet. Error if the image does not exist, or if index is too large (IndexRange is
the range of index values for the largest possible image).

Set I mag e I n dexTra n s pa re n cy (lmageName
Index
Trans

: array of char ;
: IndexRange 9

: boolean) ;

Entry lndex in the look up table associated with image lmageName is set to be
transparent. Error if the image does not exist, or if index is too large (IndexRange is
the range of index values for the largest possible image).

16

DeclareVar (VariableName :array of char ;
VariableAddress : address 1;

A scalar variable used in the Modula program is declared to the look-up table compiler
so that it can be used in composition expressions. VariableName is the name of the
variable as used in composition expressions (it would normally be the same as the
Modula-2 variable). VariableAdress is the address of the variable, and is returned by
the Modula-2 function adr(ModulaVariable).

De f i n eC o m po s i ti o n F ra me (FrameName : array of char ;
Bounds : Rectangle 1

CompositionExpression : array of char) ;
This procedure allows the user to declare a composition frame, and the composition
expression which is to be used within the composition frame. Error if FrameName is
already in use, or if the bounds are out of range. Error if CompositionExpression
violates the syntax rules for composition expressions, references images which have not
been defined, or references variables which have not been declared.

De I et e C o m po s i t i o n F ra me
The composition frame is deleted. Error if the frame does not exist. (This procedure is
unimplemented, so that currently, frames are statically allocated.)

(FrameName : array of char) ;

ReduceCompositlonFrame (FmeName :array of char ;

The composition frame region is reduced by the specified rectangular region. Error if
the frame does not exist, or if the bounds are out of range.

BinIrxis : Rectangle 1;

Extend C o m p os i t i on F ra me

The composition frame region is extended by the specified rectangular region. Error if
the frame does not exist, or if the bounds are out of range.

(FrameName :array of char ;
Boll& : Rectangle 1;

DisplayComposedlmage;
The composed images defined by all of the currently-existing frames are displayed. If
two frames overlap, the more-recently defined one has precedence.

SetGlobalBackground (red,green,blue : ColorRange);
The color displayed in areas covered by no frame is set. The default is black, (0, 0, 0).

SetFrameBackground (FrameName : FrameRange 1

The color displayed within the named frame wherever the composition expression
evaluates to transparent is set. The default is black, (0, 0, 0). Error if frame has not
been defined.

red, gre en, blue : ColorRange 1;

17

Captions for Photographic Images

Figure 1. ImageA, used to illustrate composition expressions. The vertical stripes have
intensities of 1.0, .75, S O , .25, and 0.0.

Figure 2. Images, used to illustrate composition expressions. The intensities are the
same as in Figure 1.

Figure 3. The sum of the two images, ImageA+ ImageB.

Figure 4. The difference of the two images, ImageA- Images.

Figure 5. Images a and b combined with the max operator, ImageA max Images.

Figure 6. Images a and b combined with the min operator, ImageA min Images.

Figure 7. The image Mona-Lisa, a digitized black and white halftone photo.

Figure 8. Expansion of the range [O S , 1.01 into the range [O.O, 1,0], using the
compostion expression (Mona-Lisa - 0.5) 2.

Figure 9. The half-tone image Mona-Lisa contoured at an intensity level of .6, so that
all values greater than .6 are white, and the rest are black. The composition expression
is: i f Mona-LIsa > 0.6 then 1.0 else 0.0 endif.

Figure 10. The Mona Lisa image modified using a nested if ... then ... else statement.

Figure 11. A graytone image c

Figure 12. The result of applying a nested if ... then ... else statement with or used
in the conditional expression.

Figure 13. The result of applying a nested if ... then ... else statement with and used
in the conditional expression to specify ranges of values.

Figure 14. Text strings with filled interior.

Figure 15. Text strings with empty interior, created by subtracting the interior color
from the original image.

Flgure 16. (not a photo)

Figure 17. The effect of prioritizing three monochrome (one-bit) images on top of one
another with a nested i f ... then ... else statement.

Figure 18. Two overlapping frames with different composition expressions. The frames
were created with the extend and reduce procedures.
Figure 19. A lap-dissolve sequence, showing the effects of the parameter t at 0.0, 0.2,
0.4, 0.6, 0.8, and 1.0.

